Knowledge in beee notes

Transformer Notes for Btech

the notes contains basic information about transformers and there practical use and application

TO PERFORM OPEN AND SHORT CIRCUIT TEST ON A SINGLE PHASE TRANSFORMER

the pdf contains procedure to perform open and short circuit test on single phase transformer

Analog and Digital Engineering

A brief dive into analog and digital networks and computing.

Power Electronics

Power electronics is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems the conversion is performed with semiconductor switching devices such as diodes, thyristors and transistors, pioneered by R. D. Middlebrook and others beginning in the 1950s. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy are processed. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor. The power range of VSDs start from a few hundred watts and end at tens of megawatts.

Transformers and Generators

A transformer is a passive electrical device that transfers electrical energy between two or more circuits. A varying current in one coil of the transformer produces a varying magnetic flux, which, in turn, induces a varying electromotive force across a second coil wound around the same core. Electrical energy can be transferred between the two coils, without a metallic connection between the two circuits. Faraday's law of induction discovered in 1831 described the induced voltage effect in any coil due to changing magnetic flux encircled by the coil.

Faraday's and Lenz's law

Lenz's law (pronounced /ˈlɛnts/), named after the physicist Emil Lenz who formulated it in 1834, states that the direction of the current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field.