Knowledge in GATE mechanical

Basic Thermodynamics

Thermodynamics, science of the relationship between heat, work, temperature, and energy. In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another. The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work.

Mechanics of Materials

Strength of materials, also called mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. The complete theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials. An important founding pioneer in mechanics of materials was Stephen Timoshenko.

Material Science

The interdisciplinary field of materials science, also commonly termed materials science and engineering is the design and discovery of new materials, particularly solids. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy.[1][2] Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools of the study, within either the Science or Engineering schools, hence the naming.

Turbo-machines

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.[1][2] These two types of machines are governed by the same basic relationships including Newton's second Law of Motion and Euler's pump and turbine equation for compressible fluids. Centrifugal pumps are also turbomachines that transfer energy from a rotor to a fluid, usually a liquid, while turbines and compressors usually work with a gas.[1]

The first law of Thermodynamics

The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems. The law of conservation of energy states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed. It states that the change in the internal energy ΔU of a closed system is equal to the amount of heat Q supplied to the system, minus the amount of work W done by the system on its surroundings. An equivalent statement is that perpetual motion machines of the first kind are impossible.

Gate question paper

You can learn about gate question papers

Gate question paper

You can learn about gate question papers

Fluid Mechanics and Hydraulic Machinery - Basics

Most useful to the people who are interested to participate in competetive exams like GATE , GRE etc.....The notes contains basic properties of fluids.

Fluid Mechanics and Hydraulic Machinery - Fluid Properties

the notes consists of properties of fluids and the properties that are to be concidered and neglected during the fluid flow.

Fluid Mechanics and Hydraulic Machinery - Flow Equation

The notes consists of the bernoullis theorem,its applications .

Turbines And their Properties

the notes consists of turbines,types of turbines and their properties

Fluid Mechanics and Hydraulic Machinery: Pumps

the notes consists of pumps,types of pumps ,properties etc....