Knowledge in ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION

Electromagnetic radiation is any form of energy-carrying radiation created by the interaction of electric and magnetic fields. It comes in many different types, although the differences between them are quantitative rather than qualitative. This book lists the different types that are generally recognised. Electromagnetic radiation is a wave, so has a wavelength λ and a frequency ν. It is also composed of particles called photons, and each photon has an energy E. These three quantities are related, and any of them may be used to define the type of radiation. The properties of electromagnetic radiation were first investigated by James Clerk Maxwell in 1864. He realised that in a vacuum they would travel at the speed of light, and he correctly deduced that light is radiation of this form.

ULTRA-VIOLATE AND VISIBLE RADIATION

Ultraviolet–visible spectroscopy or ultraviolet–visible spectrophotometry (UV–Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible spectral regions. This means it uses light in the visible and adjacent ranges. The absorption or reflectance in the visible range directly affects the perceived color of the chemicals involved. In this region of the electromagnetic spectrum, atoms and molecules undergo electronic transitions. Absorption spectroscopy is complementary to fluorescence spectroscopy, in that fluorescence deals with transitions from the excited state to the ground state, while absorption measures transitions from the ground state to the excited state. THERE ARE SOME QUESTIONS WHICH CLEARS YOUR CONCEPT.

INFRARED SPECTROSCOPY

Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance) on the vertical axis vs. frequency or wavelength on the horizontal axis. Typical units of frequency used in IR spectra are reciprocal centimeters (sometimes called wave numbers), with the symbol cm−1. THERE ARE SOME QUES AND ANSWERS. IT MAY HELP U TO CLEAR YOUR CONCEPT.