Knowledge in Integrated circuit

ICs and semiconductor (IV sem)

Attached document consist of the basic concepts and classification of integrated circuit (IC) and semiconductors

PHASE-LOCKED LOOP

PHASE-LOCKED LOOP • Basic loop configuration • Operation principle of phase-locked loop • Loop equations and nonlinear baseband model • Linear operation of the PLL – Linear baseband model – Transfer functions – PLL with active loop filter (Most commonly used PLL configuration) – Stability considerations • An example for PLL application: Coherent FM demodulator

Analog Circuit

SECTION 8.1: INTRODUCTION 8.1 SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE S-PLANE 8.5 FO and Q 8.7 HIGH-PASS FILTER 8.8 BAND-PASS FILTER 8.9 BAND-REJECT (NOTCH) FILTER 8.10 ALL-PASS FILTER 8.12 PHASE RESPONSE 8.14 THE EFFECT OF NONLINEAR PHASE 8.16 SECTION 8.3: TIME DOMAIN RESPONSE 8.19 IMPULSE RESPONSE 8.19 STEP RESPONSE 8.20 SECTION 8.4: STANDARD RESPONSES 8.21 BUTTERWORTH 8.21 CHEBYSHEV 8.21 BESSEL 8.23 LINEAR PHASE with EQUIRIPPLE ERROR 8.24 TRANSITIONAL FILTERS 8.24 COMPARISON OF ALL-POLE RESPONSES 8.25 ELLIPTICAL 8.26 MAXIMALLY FLAT DELAY with CHEBYSHEV STOP BAND 8.27 INVERSE CHEBYSHEV 8.27 USING THE PROTOTYPE RESPONSE CURVES 8.29 RESPONSE CURVES BUTTERWORTH RESPONSE 8.31 0.01 dB CHEBYSHEV RESPONSE 8.32 0.1 dB CHEBYSHEV RESPONSE 8.33 0.25 dB CHEBYSHEV RESPONSE 8.34 0.5 dB CHEBYSHEV RESPONSE 8.35 1 dB CHEBYSHEV RESPONSE 8.36 BESSEL RESPONSE 8.27 LINEAR PHASE with EQUIRIPPLE ERROR of 0.05° RESPONSE 8.38 LINEAR PHASE with EQUIRIPPLE ERROR of 0.5° RESPONSE 8.39 GAUSSIAN TO 12 dB RESPONSE 8.40 GAUSSIAN TO 6 dB RESPONSEBASIC LINEAR DESIGN SECTION 8.4: STANDARD RESPONSES (cont.) DESIGN TABLES BUTTERWORTH DESIGN TABLE 8.42 0.01 dB CHEBYSHEV DESIGN TABLE 8.43 0.1 dB CHEBYSHEV DESIGN TABLE 8.44 0.25 dB CHEBYSHEV DESIGN TABLE 8.45 0.5 dB CHEBYSHEV DESIGN TABLE 8.46 1 dB CHEBYSHEV DESIGN TABLE 8.47 BESSEL DESIGN TABLE 8.48 LINEAR PHASE with EQUIRIPPLE ERROR of 0.05° DESIGN TABLE 8.49 LINEAR PHASE with EQUIRIPPLE ERROR of 0.5° DESIGN TABLE 8.50 GAUSSIAN TO 12 dB DESIGN TABLE 8.51 GAUSSIAN TO 6 dB DESIGN TABLE 8.52 SECTION 8.5: FREQUENCY TRANSFORMATION 8.55 LOW-PASS TO HIGH-PASS 8.55 LOW-PASS TO BAND-PASS 8.56 LOW-PASS TO BAND-REJECT (NOTCH) 8.59 LOW-PASS TO ALL-PASS 8.61 SECTION 8.6: FILTER REALIZATIONS 8.63 SINGLE POLE RC 8.64 PASSIVE LC SECTION 8.65 INTEGRATOR 8.67 GENERAL IMPEDANCE CONVERTER 8.68 ACTIVE INDUCTOR 8.69 FREQUENCY DEPENDENT NEGATIVE RESISTOR (FDNR) 8.70 SALLEN-KEY 8.72 MULTIPLE FEEDBACK 8.75 STATE VARIABLE 8.77 BIQUADRATIC (BIQUAD) 8.79 DUAL AMPLIFIER BAND-PASS (DABP) 8.80 TWIN T NOTCH 8.81 BAINTER NOTCH 8.82 BOCTOR NOTCH 8.83 1 BAND-PASS NOTCH 8.85 FIRST ORDER ALL-PASS 8.86 SECOND ORDER ALL-PASS 8.87 SECTION 8.6: FILTER REALIZATIONS (cont.) DESIGN PAGES SINGLE-POLE 8.88 SALLEN-KEY LOW-PASS 8.89 SALLEN-KEY HIGH-PASS 8.90 SALLEN-KEY BAND-PASS 8.91 MULTIPLE FEEDBACK LOW-PASS 8.92 MULTIPLE FEEDBACK HIGH-PASS 8.93 MULTIPLE FEEDBACK BAND-PASS 8.94 STATE VARIABLE 8.95 BIQUAD 8.98 DUAL AMPLIFIER BAND-PASS 8.100 TWIN T NOTCH 8.101 BAINTER NOTCH 8.102 BOCTOR NOTCH (LOW-PASS) 8.103 BOCTOR NOTCH (HIGH-PASS) 8.104 FIRST ORDER ALL-PASS 8.106 SECOND ORDER ALL-PASS 8.107 SECTION 8.7: PRACTICAL PROBLEMS IN FILTER IMPLEMENTATION 8.109 PASSIVE COMPONENTS 8.109 LIMITATIONS OF ACTIVE ELEMENTS (OP AMPS) IN FILTERS 8.114 DISTORTION RESULTING FROM INPUT CAPACITANCE MODULATION 8.115 Q PEAKING AND Q ENHANSEMENT 8.117 SECTION 8.8: DESIGN EXAMPLES 8.121 ANTIALIASING FILTER 8.121 TRANSFORMATIONS 8.128 CD RECONSTRUCTION FILTER 8.134 DIGITALLY PROGRAMMABLE STATE VARIABLE FILTER 8.137 60 HZ. NOTCH FILTER 8.141 REFERENCES 8.14

Active Filters

1) Active Filters, Part I 2) Active Filters, Part II

Kinematics

3.1 Introduction 3.2 Characteristics of Distance and Displacement 3.3 Graphical Method for Adding Vectors 3.4 An Algebraic Method for Adding Vectors 3.5 Characteristics of Motion 3.6 Linear Motion 3.7 Uniformly Accelerated Motion 3.8 Projectile Motion 3.9 Uniform Circular Motion 3.10 Effects of Acceleration

OPAMP

OPAMP Classification of IC Types of Packaging OPAMP Characteristics Differential Amplifier Gain CMRR Level shifter OPAMP Parameters Feedback Amplifier Voltage follower

Filters related to integrated circuits

This pdf deals with all the filters related to integrated circuits. The filters for the simplification of the circuits and each simplified equations for the conversions. It gives all the equations and designing of the filters step by step conversion. Conversion from one filters to other.

Integrated circuits

The major reason for the big attention to these devices is that its efficiency, powerconsumption and produced light. Light Emitting Diodes (LEDs) and ordinary light bulbsconsume more power than organic diodes do. Other reasons for the industrial attention are i.e.that eventually organic full color displays will replace todays liquid crystal displays (LCDs) usedin laptop computers and may even one day replace our ordinary CRT-screens.Organic light-

Digital cellphone components

The common components found on all mobile phones are: A central processing unit (CPU), the processor of phones. The CPU is a microprocessor fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. A battery, providing the power source for the phone functions.